Internet Scale Storage

Microsoft Storage Community

James Hamilton, 2011/11/30 VP & Distinguished Engineer, Amazon Web Services email: James@amazon.com web: mvdirona.com/jrh/work blog: perspectives.mvdirona.com

Agenda

- **Cloud & Accelerating Pace of Innovation**
- Technology Changes
 - Memory wall & Storage Chasm
 - Disk is Tape
 - Sea Change in Networking
- Data & Storage Trends
 - Map Reduce & NoSQL
 - Migration to Cloud

Talk does not necessarily represent positions of current or past employers

2011/11/30

http://perspectives.mvdirona.com

The DB World is on Fire Again

- One Size does not fit all
 - Stonebraker showed >3 DB companies actually possible
 - Customers willing to support multiple DBMS
- 30 year old architectural decisions no longer valid
 - Memories exploding
 - Disk IOPS density going backwards
 - 1990 Seagate ST41600: 37.5 IOPS/GB
 - 2007 Seagate ST373453 : 2.4 IOPS/GB
- Plunging cost of computing
- Cloud computing accelerates all above

bia data, fast insiahts,

aster data

Plunging Cost of Computing

- Rapidly declining cost of computing
 - Technology & cloud computing economies of scale
- Warehouse & analytical use scales inversely with cost
 - Lower costs supports more data & deeper analysis
- Traditional transactional systems scale with business
 - Purchases, ad impressions, pages served, etc.

 Machine-to-machine transactions scale faster limited only by value of transaction & cost (e.g. computational trading)

2011/11/30

http://perspectives.mvdirona.com

Cloud Computing Driving Wave of Innovation & Growth

- Datacenter pace of innovation increasing
 - More innovation in last 5 years than previous 15
 - Driven by cloud service providers & very high-scale internet applications like search
- Not just a cost center
 - At scale, focus on cost
 - Mechanical, power, server, & net specialists
- Server, Storage, & infrastructure costs
 falling fast
- Data really is the challenge
 - Scaling stateless applications easy

facebook

HOO!

Perspective on Scaling

Each day Amazon Web Services adds enough new capacity to support all of Amazon.com's global infrastructure through the company's first 5 years, when it was a \$2.76B annual revenue enterprise

Where Does the Money Go at Scale?

Assumptions:

- Facility: ~\$88M for 8MW critical power
- Servers: 46,000 @ \$1.45k each
- Commercial Power: ~\$0.07/kWhr
- Power Usage Effectiveness: 1.45

3yr server & 10 yr infrastructure amortization

• Observations:

- 31% costs functionally related to power (trending up while server costs down)
- Networking high at 8% of overall costs & 19% of total server cost (many pay more)

From: http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx

Agenda

- Cloud & Accelerating Pace of Innovation
- Technology Changes
 - Memory wall & Storage Chasm
 - Disk is Tape
 - Sea Change in Networking
- Data & Storage Trends
 - Map Reduce & NoSQL
 - Migration to Cloud

Limits to Computation

- Processor cycles are cheap and getting cheaper
- What limits application of infinite cores?
 - **1. Data**: inability to get data to processor when needed
 - 2. Power: cost rising and will dominate
- Most sub-Moore attributes need most innovation
 - Infinite cores require infinite power
 - Getting data to processors in time to use next cycle:
 - Caches, multi-threading, ILP,...
 - All techniques consume power
 - More memory lanes drives b/w but more pins costs power
- Power & data movement remain key constraints

Storage & Memory B/W lagging CPU

	CPU	DRAM	LAN	Disk
Annual bandwidth improvement (all milestones)	1.5	1.27	1.39	1.28
Annual latency Improvement (all milestones)	1.17	1.07	1.12	1.11
	K	M	emory wall	Sto

- CPU B/W requirements out-pacing memory and storage
- Disk & memory getting "further" away from CPU
 - Core limiting factor: power consumption & data availability
 - Powered CPU cores have no value without data
- Large sequential transfers better for both memory & disk

Memory Wall

- Adding processor I/O pins has a positive impact but at significant power cost
 - Positive but bounded impact
- Taming the memory wall:

Multi-Chip Module

- Mem & CPU Multi-Chip Module with Thru-Si Vias
- Lab & mobile devices today

But what about HDD & storage chasm?

HDD: Capacity

• Capacity growth continues unabated

- Capacity isn't the problem
 - What about bandwidth and IOPS?

Source: Dave Anderson

HDD: Rotational Speed

- RPM contributes negatively to:
 - rotational vibration
 - Non-Repeating Run Out (NRRO)
 - Power cubically related to RPM
- >15k RPM not economically viable
 - no improvement in sight
- RPM not improving & seek times only improving very slowly
- IOPS improvements looking forward remain slow

product information for Seagate and Control Data disc drives since 1988, mobile includes Toshiba drives since 1997

Source: Dave Anderson

Disk Becomes Tape

• Disk random access B/W growth ~10% of sequential B/W

- Random read 3TB disk: 31 days @ 140 IOPS (8kb)
 - 8.3 hours sequentially
- Disk only practical for sequential workloads
- Random workloads 100% to NAND flash & follow-on

Source: Dave Patterson with James Hamilton updates

Sea Change in Networking

- Current networks over-subscribed
 - Forces workload placement restrictions
 - Goal: all points in datacenter equidistant
- Mainframe model goes commodity
 - Competition at each layer over vertical integ.
- Get onto networking on Moores Law path
 - ASIC port count growth at near constant cost
 - Competition: Broadcom, Marvell, Fulcrum,...

Net Equipment

Commodity Server

2011/11/30

http://perspectives.mvdirona.com

15

Networking Looking Forward

- Move to commodity routing:
 - Much less expensive & lower power
 - More redundancy & bandwidth
 - Get on Moore's law Path (ASIC port count growth)
- Centralized control plane
 - OpenFlow/Software Defined Networking
- Client side:
 - Virtualized NIC: Avoid hypervisor tax
 - ROCEE & iWarp: Avoid O/S transition
 - Cut-through routing: Avoid store and forward delay
 - B/W increases continue: 10GigE commodity

Agenda

- Cloud & Accelerating Pace of Innovation
- Technology Changes
 - Memory wall & Storage Chasm
 - Disk is Tape
 - Sea Change in Networking
- Data & Storage Trends
 - Map Reduce & NoSQL
 - Migration to Cloud

2011/11/30

MapReduce

- Reaction to "RDBMs don't scale" & admin costs
 - System community solution to big data problem
- MapReduce success fueled by:
 - Exploding data sizes
 - Scales (4,000 node single cluster at Yahoo)
 - Declining cost of computing
 - Sequential access pattern coupled with brute force
- MapReduce great for:
 - Extract, Transform and Load
 - Dirty data, weak schema, & access patterns not well suited to indexes
 - Executing arbitrary or complex functions over all data
- MR re-implementing indexes, materialized views, hash join, pipelined operators, ...

http://perspectives.mvdirona.com

NoSQL Movement

Everybody knows that relational databases don't scale because they use joins and write to disk.

- Another reaction "RDBMS don't scale" & admin complexity
- Unpredictable RDBMS response times dangerous at scale
- Relax a subset of ACID to achieve scale:
 - Eventually consistent
 - Non-durable on commit
 - Don't fully isolate conflicting txns
 - Don't support multi-item atomic update
 - Light to no schema enforcement
 - No complex query, no joins, no aggregates, no RI, no...
- Simple programming model and administration
 - Eventual consistency often not "really" understood
 - App code required for complex queries
- Good for some workloads at scale:
 - Cassandra, MongoDB, CouchDB, SimpleDB, ...

Client Storage Migration to Cloud

- Client disk rapidly replaced by local semiconductor caches
 - Flash becoming primary client storage media
 - Higher performance, Lower power, smaller form factor, greater shock resistance, scale below HDD cost floor, greater humidity range, wider temp range, lower service costs, ...
- Same trend in embedded devices
 - Well connected with cloud-hosted storage
- Clients storage drives cloud storage
 - Value added services, many data copies, shared access, indexed, classified, analyzed, monetized, reported, ...

Steve Jobs Provides A Look Inside the iDataCenter

Open Source & Cloud Influence

- Open Source DBs inexpensive
 - Encourages sharding rather than scale-up
- Cloud removes DB admin cost

 Further fueling increased used of sharding
- DBs Ideal workload for the cloud:
 - DB admin is hard but at scale it can be automated
 - Admin scales up well & down poorly
- Massive amount of data in cloud
 - Bring the query to data rather than data to query

ORACLE

Powered by

Summary

- Cloud scale driving quickening pace of innovation
- Plunging costs driving bigger data sets and more complex analysis
 - Data moving up memory hierarchy
 - Data moving up the storage hierarchy
- Networking costs & capabilities changing fundamentally
- Most difficult scaling problems always data related
- Exciting time to be in the storage world

Questions?

- Slides will be posted to:
 - <u>http://mvdirona.com/jrh/work</u>
- Perspectives Blog:
 - <u>http://perspectives.mvdirona.com/</u>
- Email:
 - James@amazon.com

