
Service Design Best Practices

James Hamilton
2009/2/26 Principals of Amazon

Amazon Web Services

e: James@amazon.com

w: mvdirona.com/jrh/work

b: perspectives.mvdirona.com

Agenda
• Overview

• Recovery-Oriented Computing

• Overall Application Design

• Operational Issues

• Summary

22009/2/26

Contributors: Search, Mail, Exchange Hosted Services, Live Collaboration Server,
Contacts & Storage, Spaces, Xbox Live, Rackable Systems, Messenger, WinLive
Operations, & MS.com Ops

• System-to-admin ratio indicator of admin costs

– Inefficient properties: <10:1

– Enterprise: 150:1

– Best services: over 2,000:1

• 80% of ops issues from design and development

– Poorly written applications are difficult to automate

• Focus on reducing ops costs during design &
development

Motivation

2009/2/26 3

What does operations do?

2009/2/26 4

• 51% is deployment & incident management (known resolution)

• Teams: Messenger, Contacts and Storage, OSSG & business unit IT services

Architectural
Engineering Total

8%

Deployment
Management

Total
31%

Incident
Management

Total
20%

Problem
Engineering Total

10%

Overhead Total
11%

Requests Total
6%

Software
Development

Total
7%

Site Management
Total
7%

Source: Deepak Patil, Global
Foundation Services (8/14/2006)

ROC design pattern

• Recover-oriented computing (ROC)
– Assume software & hardware will fail frequently & unpredictably

• Heavily instrument applications to detect failures

App
Bohr Bug Bohr bug: Repeatable functional

software issue (functional bugs);
should be rare in production
Heisenbug: Software issue that only
occurs in unusual cross-request
timing issues or the pattern of long
sequences of independent
operations; some found only in
production

Urgent
Alert

Heisenbug

Reboot
Failure

Restart

Re-image
Failure

Replace
Failure

Machine out of rotation and power down

Set LCD/LED to "needs service"

2009/2/26 5

• Single-box deployment

• Keep testing after production deployed

• Zero trust of underlying components

• Pod or cluster independence

• Implement & test ops tools and utilities

• Partition & version everything

Overall application design

2009/2/26 6

Design for auto-mgmt &
provisioning

• Support for geo-distribution

• Auto-provisioning & auto-installation mandatory

• Manage "service role" rather than servers

• Multi-system failures are common
– Limit automation range of action

• Never rely on local, non-replicated persistent state

• Don't worry about clean shutdown
– Often won't get it & need this path tested

• Explicitly install everything and then verify

• Force fail all services and components regularly

2009/2/26 7

MTTF/MTDL

• Mean time to failure/Mean time to data loss

– Precise models to many decimal places

– Models typically ignore S/W failure & human error

– Assume failure independence

• Unknown unknowns make MTTF/MTDL optimistic

• Threat model approach to data protection

– List all failures or sequence that could lead to data loss

– Document and implement mitigation for each

– Or document & implement that risk was accepted & why

2009/2/26 8

• Ship frequently:

– Small releases ship more smoothly

– Long stabilization periods not required if shipping often

• Use production data to find problems (traffic capture)

– Release criteria includes quality and throughput data

• Track all recovered errors to protect against automation-
supported service entropy

• Test all error paths in integration & in production

• Test in production via incremental deployment

– Never deploy without tested roll-back

– Continue testing after release

Release cycle & testing

92009/2/26

• Incrementally release with schema changes?

– Old code must run against new schema, or

– Two-phase process (avoid if possible)

• Incrementally release with user experience (UX) changes?

– Separate UX from infrastructure

– Ensure old UX works with new infrastructure

– Deploy infrastructure incrementally

– On success, bring a small beta population onto new UX

– On continued success, announce and set roll-out date

• Client-side code?

– Ensure old & new clients both run with new infrastructure

Design for incremental release

2009/2/26 10

• All systems produce non-linear latencies and/or
failures beyond a certain load level

– The load limit

• The load limit is release dependent

– It changes as the application changes

• Canary in the data center

– Route increased load to one server in the fleet

– When it starts showing non-linear delay or failure,
immediately reduce load on it or take out of LB rotation

– Result: limit is know before full fleet finds it (avoid or fix)

Canary in the data center

2009/2/26 11

• No amount of capacity head room is sufficient

• Graceful degradation prior to admission control

– First shed non-critical workload

– Then degraded operations mode

– Finally admission control

• Related concept: Metered rate-of-service admission

– Allow a single or small number of users in when
restarting a service after failure

Graceful degradation & admission
control

2009/2/26 12

• All config changes need to be tracked via audit log

• Alerting goals:

– No customer events without an alert (detect problems)

– Alert to event ratio nearing 1 (don’t false alarm)

• Alerting is an art … need to tune alerting frequently

– Can’t embed in code (too hard to change)

– Code produces events, events tracked centrally, alerts produced via
queries over event DB

• Fine-grained monitoring of all inter-service requests

• Testing in production requires very reliable monitoring

– Combination of detection & capability to roll-back allows nimbleness

Auditing, monitoring, & alerting

2009/2/26 13

• Expect latency & failures in dependent services

– Run on cached data or offer degraded services

– Test failure & latency frequently in production

• Don’t depend upon features not yet shipped

– It takes time to work out reliability & scaling issues

• Select dependent components & services thoughtfully

– On-server components need consistent quality goals

– Dependent services should be large (“worth” sharing)

• Isolate services & decouple components

– Contain faults within services

– Assume different upgrade rates

Dependency management

142009/2/26

• Systems fail & you will experience latency

• Communicate through multiple channels

– Opt-in RSS, web, IM, email, etc.

– If app has client, report details at client

• Set ETA expectations & inform

• Some events will bring press attention

Customer & press communications
plan

2009/2/26 15

• There is a natural tendency to hide systems issues

• Prepare for serious scenarios in advance

• Data loss, data corruption, security breach, privacy violation

• Prepare communications skeleton plan in advance

• Who gets called, communicates with the press, & how data is gathered

• Silence interpreted as hiding something or lack of control

• Threat model approach rather than MTTF/MTTDL
– Unknown unknowns & lack of failure independence

• Reduce application & administrative errors:
– Easy 1-box testing of entire service

– Automate (and test) operational actions & recoveries

• Expect application errors remain:
– Incremental deployment with rollback

– Deep monitoring, rapid fault detection, & enforced fault
containment boundaries

– Constant functional tests running in production

– Canary in DC to find load limits

Take Aways

2009/2/26 16

• Designing & Deploying Internet-Scale Services paper:
– http://mvdirona.com/jrh/TalksAndPapers/JamesRH_Lisa.pdf

• Autopilot: Automatic Data Center Operation
– http://research.microsoft.com/users/misard/papers/osr2007.pdf

• Recovery-Oriented Computing
– http://roc.cs.berkeley.edu/
– http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
– http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-

BDC0809EC588EEDF

• These slides:
– http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20090226.pdf

• Email:
– James@amazon.com

• External Blog:
– http://perspectives.mvdirona.com

More Information

2009/2/26 17

http://mvdirona.com/jrh/TalksAndPapers/JamesRH_Lisa.pdf
http://research.microsoft.com/users/misard/papers/osr2007.pdf
http://roc.cs.berkeley.edu/
http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20090226.pdf
mailto:James@amazon.com
http://perspectives.mvdirona.com/

