

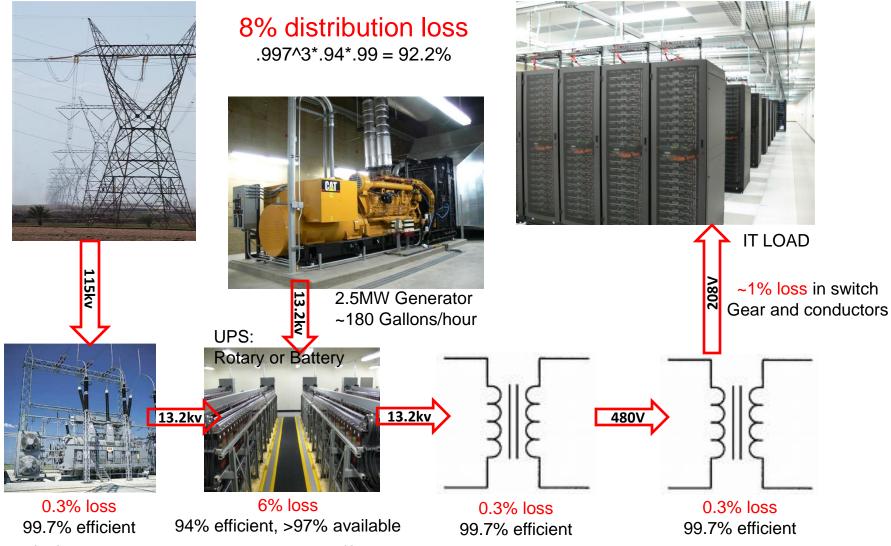
Agenda

- Where does the Power go & What To do about it?
 - Power Distribution Systems & Optimizations
 - Critical Load Optimizations
 - Server Design & Utilization
 - Mechanical Systems & Optimizations
- Modular Systems & Summary

PUE & DCIE

- Measure of data center infrastructure efficiency
- Power Usage Effectiveness
 - PUE = (Total Facility Power)/(IT Equipment Power)
- Data Center Infrastructure Efficiency
 - DCiE = (IT Equipment Power)/(Total Facility Power) * 100%

Advanced Data Centers


http://www.thegreengrid.org/gg_content/TGG_Data_Center_Power_Efficiency_Metrics_PUE_and_DCiE.pdf

Where Does the Power Go?

- Assuming a pretty good data center with PUE ~1.7
 - Each watt to server loses ~0.7W to power distribution losses & cooling
- Power losses are easier to track than cooling:
 - Power transmission & switching losses: 8%
 - Detailed power distribution losses on next slide
 - Cooling losses remainder:100-(59+8) => 33%
- Data center power consumption:
 - IT load (servers): 1/1.7=> 59%
 - Distribution Losses: 8%
 - Mechanical load(cooling): 33%

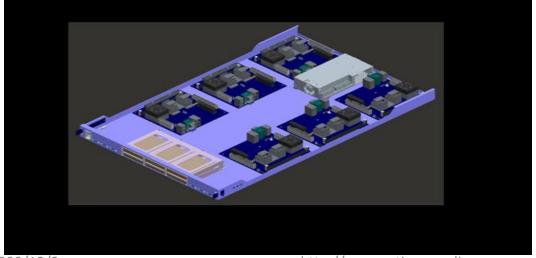
Power Distribution

Move Power Redundancy to Geo-Level

- Over 20% of entire DC costs is in power redundancy
 - Batteries to supply up to 15 min at some facilities
 - N+2 generation (2.5MW) at over \$2M each
- Instead use more, smaller, cheaper data centers
- Typical UPS in the 94% range
 - ~0.9MW wasted in 15MW facility (4,500 servers)
 - 97% available (0.45MW loss in 15MW)

Power Distribution Optimization

- Two additional conversions in server:
 - Power Supply: often <80% at typical load
 - Voltage Regulation Module: ~80% common
 - ~95% efficient available & affordable

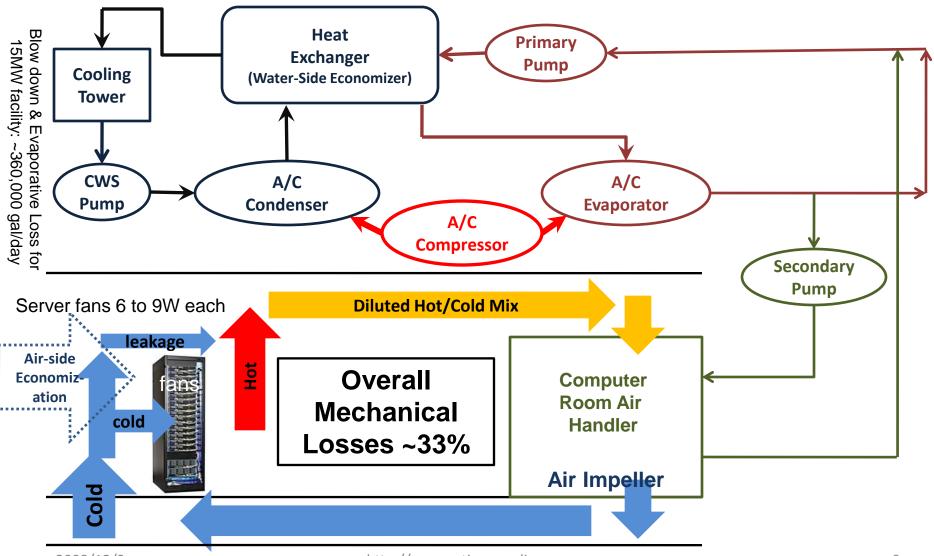

- 2. Increase efficiency of conversions
- 3. High voltage as close to load as possible
- 4. Size voltage regulators (VRM/VRDs) to load & use efficient parts
- 5. DC distribution potentially a small win (regulatory issues
- Two interesting approaches:
 - 480VAC (or higher) to rack & 48VDC (or 12VDC) within
 - 480VAC to PDU and 277VAC to load
 - 1 leg of 480VAC 3-phase distribution

Cooperative Expendable Micro-Slice Servers

- CEMS: Cooperative Expendable Micro-Slice Servers
 - Correct system balance problem with less-capable CPU
 - Too many cores, running too fast, for memory, bus, disk, ...
- Joint project with Rackable Systems

		CEMS V3	CEMS V2	CEMS V1
	System-X	(Athlon 4850e)	Athlon 3400e)	(Athlon 2000+)
CPU load%	56%	57%	57%	61%
RPS	95.92	75.26	54.27	17
Price	\$2,371	\$500	\$685	\$500
Power	295	60	39	33
RPS/Price	0.04	0.15	0.08	0.03
RPS/Joule	0.32515254	1.254333333	1.391538462	0.515151515
RPS/RU	1918.4	18062.4	13024.8	4080

•CEMS V2 Comparison:


•Work Done/\$: +372%

•Work Done/Joule +385%

•Work Done/RU: +941%

Update: New H/W SKU likely will improve numbers by factor of 2. CEMS still a win.

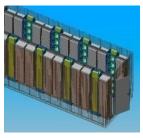
Conventional Mechanical Design

Mechanical Optimization

- Simple rules to minimize cooling costs:
 - 1. Raise data center temperatures
 - 2. Tight control of airflow with short paths
 - 3. Cooling towers rather than A/C
 - 4. Air side economization (open the window)
 - 5. Low grade, waste heat energy reclamation
- Best current designs bring water close to load but not direct water
 - Lower heat densities could be 100% air cooled
 - density trends argue against
- Common mechanical designs: 33% lost in cooling
- PUE 1.1 to 1.2 implies cooling overhead in 5% to 15% range
- PUE under 1.0 within reach with some innovation
 - Waste heat reclamation in excess of power distribution & cooling overhead
 (~30% effective reclamation sufficient for sub 1.0)

Agenda

- Where does the Power go & What To do about it?
 - Power Distribution Systems & Optimizations
 - Critical Load Optimizations
 - Server Design & Utilization
 - Mechanical Systems & Optimizations
- Modular Systems & Summary



Modular Data Center

- Just add power, chilled water, & network
- Drivers of move to modular
 - Faster pace of infrastructure innovation
 - Power & mechanical innovation to 3 year cycles
 - Efficient scale-down
 - Driven by latency & jurisdictional restrictions
 - Service-free, fail-in-place model
 - 20-50% of system outages cause by admin error
 - · Recycle as a unit
 - Incremental data center growth
 - Transfer fixed to variable cost

Microsoft Chicago deployment: entire

first floor with ½ MW containers

Summary

- Some inefficient facilities as low as 2.0 to 3.0 PUE
- PUE in ~1.2 attainable with care using state of the art techniques
- PUE in ~1.1 range attainable
 - aggressive air side economization
 - higher temperature
 - high voltage distribution to racks
- PUE under 1.0 within reach with some innovation
 - Waste heat reclamation in excess of power distribution & cooling overhead
 (~30% effective reclamation sufficient for sub 1.0)
- Most important gains not measured by PUE
 - Increased server efficiency with sub-component power management
 - Much higher server utilization
- Work done/\$ & work done/W are what really matters (S/W issues dominate)

More Information

- These slides
 - <JRH>
- Designing & Deploying Internet-Scale Services
 - http://mvdirona.com/jrh/talksAndPapers/JamesRH Lisa.pdf
- Architecture for Modular Data Centers
 - http://mvdirona.com/jrh/talksAndPapers/JamesRH_CIDR.doc
- Increasing DC Efficiency by 4x
 - http://mvdirona.com/jrh/talksAndPapers/JamesRH PowerSavings20080604.ppt
- JamesRH Blog
 - http://perspectives.mvdirona.com
- Email
 - JamesRH@microsoft.com