
Active Server Availability Feedback

James Hamilton

Microsoft SQL Server
One Microsoft Way

Redmond, WA
USA

JamesRH@microsoft.com

Abstract
The current software development process in
common use within industry is inefficient, in that
the time required to incorporate results from
competitive, beta, and previous releases into new
versions available to customers is typically
measured in years. Further, the accuracy of
customer feedback returned to the development
team is frequently weak or incomplete, with
samples often drawn from only a small, self-
selected set of customers. This paper argues that
we can automate this feedback process and, in so
doing, drive an order of magnitude improvement
in the rate at which software evolves and
improves.

1. Introduction
The author has worked for a decade and a half on
commercial system software, first language compilers and
later database management systems, at two of the three
leading commercial database system producers. Over this
period, we have experienced a ten fold increase in the size
of these products when measured in lines of code, and
have seen an expansion both in development and test team
size that roughly parallels code base growth.
Contemporary database products are typically larger than
three million lines of code and the engineering teams for
mature, industry leaders have grown to several hundred
engineers each. For this system size and complexity
growth to even be possible, it is very clear that there have
been incremental improvements to the software

development process, which we fully expect will
continue. What is less clear is: 1) do systems really need
to be this big to meet current customer requirements, and
2) could these systems be evolved more quickly to
respond to customer requirements in a more targeted
fashion?

Systems growth and development process
improvement will continue, but existing processes only
allow our current understanding of customer requirements
to be translated into software. The improvements do
nothing to increase the quality of our understanding of
customer requirements nor do they help to tighten the
feedback loop between a customer’s experience using the
product and a subsequent improvement to that product.

2. Defining an Efficient Software
Development Process

Clearly, as an industry, we should continue working to
improve the software development process – there is no
question as to the worthiness of this endeavour, but there
is considerable debate on whether the bulk of the
engineering work that these process improvements are
enabling are actually accurately targeting customer
requirements. Is the feedback between customer
experience and subsequent product improvement
sufficiently responsive? In this paper we focus on
improving the feedback loop between a customer’s actual
experience using a server-side software product and the
release of changes to the product that subsequently
improve this experience.

In the mid-1960’s a group of researchers,
including Nobel laureate Paul Samuelson, defined the
Efficient Market Hypothesis [10]. This theory argues that
market prices reflect the knowledge and expectations of
all investors. An efficient market is one that translates
knowledge very rapidly into an adjusted and accurate
stock price. There have been several instances of late
where critical market information was not made available
to investors and, as a consequence, market prices did not

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

accurately reflect the true value of the companies in
question. However, the theory is still of value, in that any
market that rapidly translates deep knowledge of a given
company’s present and future value into an accurate
market price is an efficient market.

Let us define an efficient software development
process similarly, as one where customer needs and
wants, including their (possibly negative) experiences
using existing products, are translated into targeted
software improvements that are quickly made available to
customers. An efficient software development market is
one where requirements and issues with existing products
are rapidly responded to with targeted product
improvements.

Our work here focuses on improving the
bandwidth and speed of the communication between
customers and the product development team, but does
not address new requirements gathering or better
understanding of where additional features would help
customers. Focusing on this feedback loop from
customers to the product team and the translation of this
feedback into targeted product improvements, we note
that the current processes in widespread use today are
extremely weak, which is to say that the opportunity for
improvement is great. Current customer feedback to
product teams suffers from low bandwidth channels, and
few customers actually participate. Looking at the
sources of customer feedback available to a development
team, we have the marketing team reporting back on why
they were, or were not, able to close a sale, the product
support team reporting on common customer problems,
user group presentations made by customers, consultant
and industry analysis reports, and beta customer feedback.
In addition, most development teams closely partner with
a small subset of their customers with whom there is a
high quality exchange of information. Summarizing what
is available, a few problems can be immediately seen: 1)
most data is often not directly obtained from customers in
that it’s reported through (a possibly biased) intermediary
with a significant time lag, and 2) the data which is
directly sourced from customers is very expensive to
gather and, as a consequence, is only obtained from a
small fraction of the customer base with enterprise
customers being significantly over-represented.

We propose using software data collection
systems to solve these problems. Automatic data
collection can allow direct, detailed customer feedback to
be obtained economically from a substantial cross-section
of the entire customer base which enables reliable
statistical analysis. This gets reliable and detailed
feedback directly back to the development team, allows
rapid product feature or improvement prioritization to be
made, is a far more precise process, and the information
can be acted on much more quickly.

Our work on active server feedback is being
driven by two basic premises: 1) software availability will
only be incrementally improved by continued investment

exclusively in existing approaches to improving software
quality, and 2) system downtime and the causes of these
losses of availability are not sufficiently well-understood
and, as a consequence, are not fully and efficiently
addressed since it is not possible to effectively address a
problem when the root cause and problem magnitude are
not fully known.

Why do we feel that current techniques can only
yield incremental improvements in software quality? The
first and perhaps strongest argument is one based upon the
sheer size and complexity of a modern server-side
software stack. A modern network-attached storage sub-
system is currently over a million lines of code.
Operating systems, logically above the storage sub-
system, are now tens of millions of lines of code with
systems such as Windows XP reportedly approaching
fifty million [3]. Continuing to examine the server-side
software stack, a typical data management system is over
three million lines of code. Additionally, a high scale,
mission-critical application like SAP is over thirty-seven
million lines of code [9]. What this means is that for a
customer to experience a reliable, robust system that
returns correct results in a predictable manner, this entire
hundred million line software stack must all operate
correctly. What makes this even more difficult to achieve
is that all components in the stack are on different release
cycles, there is no integration test team responsible for the
entire stack, the stack is usually sourced from multiple
vendors and all vendors are asynchronously releasing
possibly non-cooperating fixes. As an industry, we
attempt to deal with this complexity by depending upon
well-architected interfaces between components and by
investing heavily in testing efforts. On systems software
teams on which we have worked over the years, tester to
developer ratios have approached 1:1, yet it is clear that
the core complexity problem is neither solved nor is the
impact substantially mitigated. Further investment in
maintaining and improving the software quality assurance
process is clearly money well spent, and incremental
improvements will continue to be realized, but a
fundamental improvement in product availability will
require new processes and approaches.

One approach that appears to have merit is
capturing actual operational data from the field and
feeding this customer experience back into the
development process. An application of this approach
that has yielded good results is to gather customer
problems as reported to the vendor service organization
[1, 2, 11]. A similar approach is to analyze problems as
recorded directly by the customer [7, 8]. The principle
advantage of these tracking systems is that, when an error
is reported to a vendor or explicitly tracked by a customer,
it is normally a serious event and therefore interesting.
However, our data suggests that administrative error is a
leading cause of operational system downtime and this
entire class of errors are typically not reported to system
vendors as a bug and are rarely accurately tracked in

customer reports, since the accuracy and completeness of
these reports are wholly dependent upon the
administrators themselves, many of which do not do a
complete job of self-evaluation.

A refinement to this error tracking approach that
depends upon customer reports is one where system-
generated error logs are analyzed [4, 5, 6, 13]. These
failure-tracking systems have access to the full range of
failures from hardware and software issues through to
administrative errors but the information that can be
mined from an error log is only a small subset of the
information about the state of a failing system. As a
consequence, it can be very difficult to ascertain the real
causes of many failure modes. Error log analyzers have a
more complete view of system availability, but a less
precise view over the causes of the system failures, than
do those systems dependent upon actual customer-
initiated feedback. Some researchers have combined
event log analyzing with administrator interviews to
improve the precision of the error classification [6]. This
can provide quite precise downtime cause classification,
but these research methods are people-intensive in that
interviews must be conducted and the techniques tend not
to scale cost-effectively to very large customer sets. In
addition, many of the antecedent conditions to failure are
not errors so they will not appear in logs. As a result,
these systems have limited power in finding correlations
between operationally-acceptable system states and
subsequent system failures. Predictive failure analysis
with this subset of the system state data is necessarily
incomplete. In this paper we focus on two forms of
improvement: 1) reducing human involvement and
subsequent cost in the data gathering process, and 2)
improving the detail of the information gathered to
include administrative errors and non-failure state
tracking to help support predictive failure models.

We refer to failure and system state tracking
systems that return data back to the development team
without human intervention, interviews, or site visits as
Active Server Availability Feedback (ASAF) systems. In
this paper and we will look at two ASAF systems in more
detail. The first system, Watson [12], is already in broad
use in client-side products and is now being adapted for
server-side deployment. In Section Three of the paper,
we will describe Watson and show how it has been
adapted for use with Microsoft SQL Server 2000 Service
Pack Three. In Section Four, we describe the Data
Collection Agent (DCA), which is a research system
currently deployed on over 100 Microsoft SQL Server
2000 production servers. The Data Collection Agent is an
ASAF system that provides much more detailed data than
Watson on product usage and the availability achieved
and, rather than only reporting failures, it allows many
system metrics to be monitored continuously over time.
We believe this additional detail will allow correlation
and trend analysis, allowing us to learn more about the
causes of downtime and how to efficiently address it. In

Section 4.1, we outline some early results from the DCA
project.

3. Watson: System Failure Reporting
Watson is an error reporting framework originally
developed by the Microsoft Office team but now in use by
Windows XP, Internet Explorer, MSN Explorer, Visual
Studio 7, and other products in addition to the Office
suite. It is a multi-tier system that automatically returns
to the development team reports on failures experienced
by customers along with sufficient information to
diagnosis many of these failures.

Each software system under Watson monitoring
has an additional software component responsible for
detecting and reporting failures back to the data collection
system. The backend system is composed of many cloned
IIS web servers, each of which stores data across a
firewall into a SQL Server database and a file store for the
bulk debug information. The workload is distributed
over the IIS systems by Windows Load Balancing Server.
The backend database server is replicated for redundancy
and the data is post processed into a system that is
accessible to the product development team.

When a failure is detected, the user is informed
and given the opportunity to send the failure data back to
the development team. For privacy protection reasons,
we first prompt users on whether they would like to send
the failure data and this dialog defaults to “do not send” to
reduce the likelihood of accidental transmission. There
was considerable concern early on in the development of
Watson that customers would be unwilling to return
failure data. However, we have learned in use that a
substantial percentage of customers are very motivated to
see the products they use improve and, as a consequence,
are willing to partner with the development team and
return this data. Encouraging customer participation has
not been difficult and, although we do not have statistical
analysis to support the assertion, we believe that we do
receive feedback from a sizable and statistically valid
cross-section of the customer base.

Since we have the same privacy concerns on the
server side as we do on the client, it is very important that
participation in the program be optional and the default be
not to participate. However, unlike the client side, it is
not practical to ask the customer if they are willing to
send failure data using a pop-up window on a server-side
system. Addressing this concern, we prompt for
participation at server install or upgrade time and persist
this setting until subsequently changed. We have not yet
had enough experience with this approach to know
whether this particular form of “opting in” reduces
participation. We expect that it may but, even if
participation dropped to 10%, were that a valid cross
section of the customer base, it would be more than
adequate for these purposes.

In SQL Server, we have Watson enabled for
product installation failures, errors found by the core
engine, the data replication sub-system, the OLAP engine,
and the system management tools. On setup failures, we
return the log from the setup execution. On operational-
server error conditions, we return the current point of
execution and the call stack that got there, system
configuration information, the modules currently loaded
into the server address space, the type of exception if
applicable, and global and local variable state.

A key to managing potentially large amounts of
data is to have an efficient and accurate means of
aggregating the results into failure classes. Rather than
looking at all failures individually, we want them sorted
into unique failures and we want the count of all instances
of that failure. In essence, we need a signature or unique
name for the failure. In SQL Server, we use a hash of the
stack trace on the basis that all failures at a given point in
the code, with identical call stacks to reach that point, are
very likely to represent the same error. So, for every
unique stack trace, we have a count of the number of
instances of that issue that have been reported. This
allows us to concentrate first on those issues with the
greatest number of instances and, as one might guess, the
distribution is very highly skewed, with a small number of

issues causing the vast majority of the reports. This is the
ideal situation where a moderate engineering investment
has substantial leverage. When development investment
is driven by better quality information, we are able to
address issues much more quickly and much more
efficiently.

In addition to using this bucketized design,
where we use a stack trace hash as a means of counting
the number of instances of a unique error type, we can
also use this problem identification mechanism to return
custom information back to users. Rather than always
returning the default “thanks for contributing to the
improvement of the product”, for those issues where we
have previously identified that a code change is required
to fix the problem, we can return an explanation with a
URL to the appropriate QFE (Quick Fix Engineering). In
these cases, we are both tracking the failures and helping
customers get the fixes they need more quickly.

Continuing to build on the bucketized design, we
also leverage this tracking system as a means of
restricting the amount of data that is sent. If we already
have several instances of a given failure and believe we
do not need further stack data to determine the cause, we
can configure the system to count future instances of the
problem without sending all the system state and debug

Figure 1: Internal Watson Query Page

information that we normally transmit. In addition to
being able to request less information on a given error
condition, we can also chose to request that more be sent.
If a particularly difficult problem is being debugged, the
server-side Watson systems can be configured to request,
for a specific error instance, that additional state
information be transmitted back from the customer to aid
in the debug effort.

Once the data has been delivered to the
development team, it must be made available in a form
that can be used quickly and easily by all engineers on the
team. Watson achieves this through a web-based query
page. As an example, in Figure 1 we are requesting a
report on all issues experienced by the core SQL Server
engine (sqlservr.exe). In this report, a list of issues is
returned sorted by number of times that particular issue
has been reported. Any of these issues can be double
clicked to see more detail and example of which is shown
in Figure 2.

From the details display shown in Figure 2, we can
see that this error condition has ten instances reported.
The issue shown in the example appears to be a problem
in the SQL Server Metadata Manager. In many cases, the
data available from this report, or from the additional data
available via live links, are sufficient to locate and fix a

problem without deeper investigation or needing to
request more detailed data.

4. Data Collection Agent
In the previous section, we explained how we have
developed and deployed Watson support in all retail
copies of SQL Server 2000 Service Pack Three. Early
experience suggests that Watson is very effective at
rapidly feeding back to development teams the top N
problems experienced in real operational environments.
However Watson only reports problems and not the
conditions that lead to the problems or detailed tracking
information on how the system was performing when
there were no problems. To address this we have
developed an ASAF system, currently in limited
operational-deployment, that tracks not only failures but
uptime, downtime, and numerous other metrics of system
activity. Our goals for this work are to obtain actual
customer-experienced uptime, learn the causes of system
downtime, and both drive and track release-to-release
availability improvements while reducing customer
administration and product support costs. In the longer
term, we hope to find correlations between systems states
and subsequent failures, allowing proactive failure
prediction and recovery.

Figure 2: Watson Issue Detail Display

The Data Collection Agent (DCA) is written as a
four-tier system (Figure 3). Data is collected by an agent
running on each system being monitored. That data is
sent to a central data collection server, of which there
needs to be at least one in each customer enterprise. The
data is aggregated at the Data Collection Server and then
sent using the Watson infrastructure up to the Watson web
farm. From there the data is loaded into a SQL Server
database for further analysis.

The data collected on each server is divided into three
broad classes. The first class is a start-up snap-shot that
includes:
• Operating system version and service level
• Database version and service level
• Syscurconfigs table
• SQL server log files and error dump files
• SQL Server trace flags
• OEM system ID
• Number of processors
• Processor Type
• Active processor mask
• % memory in use
• Total physical memory
• Free physical memory
• Total page file size
• Free page file size
• Total virtual memory

• Free virtual memory
• Disk info – Total & available space
• WINNT cluster name if shared disk cluster

The second class is made up of SQL Server state
information, including:
• SQL Server trace flags
• Sysperfinfo table
• Sysprocesses table
• Syslocks table
• SQL Server response time
• SQL server specific performance counters:

o \\SQLServer:Cache Manager(Adhoc SQL
Plans)\\Cache Hit Ratio

o \\SQLServer:Cache Manager(Misc.
Normalized Trees)\\Cache Hit Ratio"

o \\SQLServer:Cache Manager(Prepared SQL
Plans)\\Cache Hit Ratio

o \\SQLServer:Cache Manager(Procedure
Plans)\\Cache Hit Ratio

o \\SQLServer:Cache Manager(Replication
Procedure Plan)\\CacheHitRatio

o \\SQLServer:Cache Manager(Trigger
Plans)\\Cache Hit Ratio

o \\SQLServer:General Statistics\\User
Connections

Figure 3: Data Collection Agent Architecture

The third and final class of data is comprised of operating
system state which includes:
• Application and system event logs
• Select OS performance counters:
• \\Memory\\Available Bytes
• \\PhysicalDisk(_Total)\\% Disk Time
• \\PhysicalDisk(_Total)\\Avg. Disk sec/Read
• \\PhysicalDisk(_Total)\\Avg. Disk sec/Write
• \\PhysicalDisk(_Total)\\Current Disk Queue length
• \\PhysicalDisk(_Total)\\Disk Reads/sec
• \\PhysicalDisk(_Total)\\Disk Writes/sec
• \\Processor(_Total)\\% Processor Time
• \\Processor(_Total)\\Processor Queue length
• \\Server\\Server Sessions
• \\System\\File Read Operations/sec
• \\System\\File Write Operations/sec
• \\System\\Procesor Queue Length

On system start-up, DCA takes the initiation
snap-shot (class one above) and then, every minute during
normal operation, it takes a snap-shot of the SQL and O/S
state (classes two and three above). Under normal
operating conditions, every fifth of the once-per-minute
collections are returned. But, in the event of a system
failure, we send all one minute snap-shots over the last ten
minutes. This means we have five minute granularity
during standard system operation but one minute
granularity snap-shots during the ten minutes prior to a
system failure.

4.1 DCA Results
The purpose of the fine grained DCA data is manifold. It
gives an accurate measure of product availability in actual
customer use. And, during product beta release cycles,
the data returned can be used to set specific goals on
product availability improvements and help the
development team understand exactly what is being
achieved and whether further work is needed prior to
release. This may sound like a minor achievement but,
when an attribute can not be measure accurately, it is very
difficult to drive substantial and sustained improvement.
Further, since many customer organizations do not have
accurate and comparable data on system uptime, it is
difficult to reliably get this availability data directly from
them.

Through this project we have learned that
administrative procedures and experience levels have a
substantial impact on the availability achieved, which
implies that test systems do not accurately model
customer usage, due to substantially different
administrative models, training, and responsibilities.

In addition to tracking achieved system
availability, we have fine-grained data on system state
changes and how they correlate with subsequent system

failures. From this we have learned some not particularly
surprising results, such as finding that systems are much
more likely to fail after new software has been installed
than multiple months after installation. That particular
finding was expected but other less obvious scenarios can
also be evaluated. For example, systems with a large
number of locks held (live locks or non-detected
deadlocks) frequently get hard cycled as do systems with
very high CPU loads. The implication from this
correlation is that, when a system is performing poorly, it
is likely that an administrator will simply restart the
system. We could partially address this issue by
providing better diagnostic tools so that a restart would be
unnecessary, and we could work on reducing restart times
when systems are cycled. Simple steps that can be taken
to reduce restart times when a system cycle is probable
include check-pointing system state. We believe that
simple and non-obvious actions such as a well-placed
checkpoint can improve availability by reducing the
downtime caused by a future administrative action that we
can predict to be likely. Relationships between metrics
such as these are very hard to find on test systems, and
really only show up reliably in actual customer-
administered environments.

The DCA system is still in an early research phase
and, although it is deployed on over 120 servers at this
time, it is still a long way from deployment in the
standard retail version of SQL Server as we have done
with Watson. However, even as an immature system,
DCA has already conclusively shown many correlations
that we had always suspected to exist from experience
working with customers and, in a few cases, we have
found unexpected correlations:

• There is a high correlation between operating system

reboot and improper database shutdown. Upon closer
investigation, we have learned that the Windows
Service Control Manager does not always allow
sufficient time for very large database systems to
fully checkpoint on shutdown, vastly increasing
recovery time and unnecessarily increasing downtime
duration. This is a good example of a small issue that
is fairly easy to fix that can have a substantial impact
on overall database availability, in that fully 5% of
the unclean shutdowns that we have tracked were
contributed by this issue and, each time it occurs, the
potential downtime contributed can run into the tens
of minutes.

• When looking at all instances of lost availability, we
saw that fully 66% are shutdowns initiated by the
system administrator. This is a higher number than
found in past studies and it could be partly
contributed to by the fact that these systems under
monitoring are running pre-release beta software,
although they are fully operational production
systems. We need to gather more data on this trend.

• Software upgrades of both the O/S and database
system contribute significantly to instances of system
shutdowns, with 19% of the clean shutdowns and 5%
of the unclean shutdowns following software
upgrades (again the contribution of running beta
software may artificially increase this result).

• System reboots tend to occur in groups of more than
one, which is to say that a single reboot is an
excellent predictor of another being highly likely.

• Database management system hard failure is not a
significant contributor to lost system availability,
with this factor disappearing into the statistical noise.
As we get more data, we will be able to more
precisely assess the contribution of DBMS failure,
but it appears at this point to only be a minor factor,
which is to say that other factors contributing to
downtime represent much higher improvement
leverage.

• 10% of the clean shutdowns were instances of the
administrator entering single user mode. Typically
this is done to upgrade software, perform offline
utility operations, perform schema maintenance, and
sometimes for testing purposes. More investigation
is required to better understand the primary factors
driving the decision to shift to single user mode.

• When looking at the data closely, we see many minor
instances of failures of related subsystems and
components that do not appear to have received any
administrative attention, indicating that it is quite
likely that the administrators were unaware of these
issues. We believe that many hard failures are the
results of several errors accumulating and, if this
trend is established, then one action we can take as
systems providers to mitigate this is to make it more
obvious when a component or subsystem needs
administrative attention. By making issues clear and
recommending corrective action, we may be able to
avoid subsequent hard failures and lost system
availability.

4.2 Future Work
In addition to helping to better understand the causes of
system downtime, the DCA monitoring system has
potential in other applications as well. Some that we are
considering as potential future area of investigation:
• Database feature usage: which features are actually

used by a broad cross section of customers and which
are of little value? This information can help drive
development investment and help reduce the near
infinite accumulation of features in current systems
by quantifying how much actual customer use a
feature is receiving.

• Beta release quality assessment: support to quantify
customer usage of product features during the beta
program which can help the product team understand

the quality and completeness of the beta program and
whether more beta customers are required to
adequately test the product.

• Predictive repair or corrective action: If we are able
to reliably predict when the probability of a system
failure is high, we can take proactive corrective
action. Simple examples include restricting the
database request admission policy when resources are
scarce and the system is entering an unstable mode.
A more radical approach being advocated by
Software Rejuvenation researchers is to schedule a
system reboot on the assumption that aggressive, yet
planned, action will yield better system availability
than simply waiting for the expected failure.
Although the users will still experience a downtime,
we can forewarn the administrators and reduce the
duration of system unavailability by properly shutting
down the system.

Our Data Collection Agent work will continue, but

early results are both confirming some of what
experienced database developers would expect and, in
some cases, we are finding issues where we didn’t predict
the impact or frequency of the failure. Overall, a deeper
understanding of the causes of downtime is being
achieved and, with that better understanding, comes an
improved ability to act.

5. Summary
In this work, we have argued that the software
development process is inefficient at translating customer
experience, especially negative experience, into product
improvements. In essence, we are arguing that lack of
knowledge across the industry is restricting progress on
some of the most important requirements, most notably,
system availability. We believe that Active Server
Availability Feedback is an effective means to gather a
deeper and more detailed understanding of how systems
are being used, what issues are encountered in normal
customer usage, and what issues, be they product or
administrative, are causing downtime and to quantify
these contributions. Two Active Server Availability
Feedback systems were presented; one now in production
use in a commercial DBMS and another that is still in an
early research phase. Results were presented for both.

Acknowledgements
I would like to thank David Patterson and the University
of California at Berkeley Recovery Oriented Computing
team for many ideas and suggestions on software
introspection and software availability monitoring that
helped initiate this work. And, thanks to Brendan Murphy
for his related work on VAX and Windows downtime

tracking systems and his continuing contribution and
support of the DCA project.

The Office Watson development team
conceived, designed, implemented, and continues to
support the Watson framework and Steve Lindell, of the
SQL Server team, implemented the SQL Server Watson
support. Aakash Kambuj wrote the client and mid-tier
DCA implementations. Grigory Pogulsky implemented
the DCA server-side data acquisition system and manages
several hundred gigabytes of database-resident DCA data.
Christian Konig, Grigory Pogulsky, Robert Dorr, and
Brendan Murphy all contribute greatly to the continuing
DCA data analysis effort.

References
[1] J. Gray. “Why Do Computers Stop and What

Can Be Done About It?” Symposium on
Reliability in Distributed Software and
Database Systems, 3-2, 1986.

[2] J. Gray. “A Census of Tandem System

Availability between 1985 and 1990,” Tandem
Technical Report 90.1, Jan. 1990.

 [3] R. Lemos. “Old Code in Windows is a Security

Threat”, CNET news.com,
http://news.com.com/2100-1001-934363.html,
June 10, 2002.

[4] S. Mourad and D. Andrews. “On the

Reliability of the IBM MVS/XA Operating
System,” IEEE Transactions on Software
Engineering, Oct. 1987.

[5] B. Murphy and B. Levidow. “Windows 2000

Dependability,” Microsoft Research Technical
Report, MSR-TR-2000-56, June 2000.

[6] B. Murphy and T. Gent. “Measuring System

and Software Reliability using an Automated
Data Collection Process,” Quality and
Reliability Engineering International, 11:341-
353, 1995.

[7] D. Oppenheimer. “Why Do Internet Services

Fail and What Can Be Done About It?”
University of California at Berkeley Masters
Report, 2002.

[8] D. Oppenheimer and D. Patterson. “Studying

and Using Failure Data from Large-Scale
Internet Services,” 10th ACM SIGOPS
European Workshop, Saint-Emilion, France,
Sept. 2002.

 [9] Private correspondence with SAP.

[10] P. Samuelson. “Proof that Properly Anticipated

Prices Fluctuate Randomly, Industrial
Management Review, Vol. 6, 1965. pp.41-49.

[11] M. Sullivan and R. Chillarege. “Software

Defects and their Impact on Systems
Availability: A Study of Field Failures in
Operating Systems,” FTCS 1991: 2-9.

[12] Watson Development Team. “Reporting

Office Application Crashes”
http://www.microsoft.com/office/ork/xp/two/a
dmA05.htm.

[13] J. Zbigniew and R. Iyer. “Networked

Windows NT Systems Field Failure Data
Analysis,” Proc. of IEEE Pacific Rim Intl’
Symp. On Dependable Computing (PRDC),
Hong Kong, China, Dec. 1999.

