Thesis: XML is good for SOME persistent storage
Agreed:

General ledger will not be in xml

Agreed:

XML performance is poor (10x is common).

Agreed:

Update views are hard

Read views are easy (XSL)

BUT,… Things have changed in 30 years.
This Internet thing is going to be big.

Relational failed because….
· They are control freaks – you will fit into the schema.

· XML lets you say ANYTHING.

· Information is being published in many different ways.

· Spectrum from documents to data.

XML Virtues
It is human readable.

It is very easy to generate

It is an easy way to represent a hierarchy of records

Purchase order, mailbox, book with chapters,..

One message in, one message out.

No Odbc/Jdbc madness.

XML is in YOUR Future (your present if you use MS Office™)

People will send YOU XML data (with or without schemas/dtds/namespaces)
You ignore what you do not understand (at the moment).

Can shred into DBMS but that may be lossy (preserve the things you do not know).
You NEED to remember all the messages: so XML blobs will go into your DBMS.

You convert it to DOM, manipulate it.

Remember Get-Unique-Within-Parent, Get-Next, SSA, …?

XML is in YOUR Future (your present if you use MS Office™)
The Slippery Slope
You will want to change it someday.

You don’t update XML, you create new XML

So, no view update problem:

Only Query, Insert, Delete.

You will want to persist the data to a local store.

So there will be client-side XML stores.

Gradually you build a client-side database.

Your Future XML store: The Slippery Slope

Update-grams get sent back to the server
.

These can be commands, or they can be new data.

XML allows new style of programming:

VERY late binding

Ignore what you do not understand
It’s DIFFERENT!
Server Side XML Stores are Proliferating Too

Microsoft MyServices is a ½ shredded XML store

Microsoft Office.Net is an XML store

WebServices externalize XML stores

Many more in the ecosystem
