Microsoft SQL Server Full-Text Search

James R. Hamilton, Tapas K. Nayak

Microsoft Corporation
{JamesRH, TapasNay}@microsoft.com
1. Introduction

Over the last decade, the focus of the commercial database management community has been primarily on structured data and the industry as a whole has been fairly effective at addressing the needs of these structured storage applications. However, only a small fraction of the data stored and managed each year is fully structured while the vast preponderance of the data stored is either wholly unstructured or only semi-structured in the form of documents, web-pages, spreadsheets, email and other weakly structured formats.
This work investigates the features and capabilities of the full text search access method in Microsoft SQL Server 2000 and the follow-on release of this product and how these search capabilities are integrated into the query language. We’ll first outline the architecture for the full text search support, then describe the full text query features in more detail, and finally show examples of how this support allows single SQL queries over structured, unstructured, and semi-structured data.
2. SQL Server Search Architecture
The SQL Server full text search support leverages the same underlying full text search access method and infrastructure employed in other Microsoft products, including Exchange, Sharepoint Portal Server and the Indexing Service which supports full text search over filesystem hosted data. This approach has several advantages, the most significant of which are 1) common full text search semantics across all data stored in relational tables, the mail system, web hosted data, and filesystem resident data, and 2) leverage of full text search access method and infrastructure investments across many complementary products.
Indexed text in SQL Server can range from a simple character string data to documents of many types, including Word, Powerpoint, PDF, Excel, HTML, and XML. The document filter support is a public interface, enabling custom filters for proprietary document formats to be integrated into SQL Server. The architecture is composed of five modules hosted in three address spaces (figure 1: Architecture of SQL Server Full Text Search): 1) content reader, 2) filter daemon, 3) word breaker, 4) indexer, and 5) query processor.

Full text indexed data stored in SQL Server tables is scanned by the content reader where packets are assembled including related metadata. These packets flow to the main search engine which triggers the search engine filter daemon process to consume the data read by the content reader. Filter daemons are modules managed by MS Search but outside of the MS Search address space. Since the search architecture is extensible and filters may be sourced from the shipped product, ISV supplied, or customer produced and there is a non-zero risk that a filter bug or a combination of a poorly formed document and a filter bug could allow the filter to either fail or not terminate. Running the filters and word breakers in an independent process allows the system to be robust in the presence of these potential failure modes. For example, if some instance of daemon process is seen to consume too much memory MS Search process kills it and restarts a new instance.

Filters are invoked by the daemon based on the type of the content. Filters parse the content and emit chunks of processed text. A chunk is a contiguous portion of text along with some relevant information about the text segment like the language-id of the text, attribute information if any etc. Filters emit chunks separately for any properties in the content. Properties can be items such as title or author and are specific to the content types and therefore understood by the filters.

[image: image1.emf]MS Search Process

Filter Daemon

Manager

Keywords

Filter Daemon Process

Shared Memory

Filter(s)

Batch

Requests

Chunk

Buffer Status

Indexer

Catalog

SQL Server Engine

S

h

a

r

e

d

M

e

m

o

r

y

I

F

i

l

t

e

r

Word

Breaker

I

W

o

r

d

-

B

r

e

a

k

e

r

 Project

Batch Object

In-Progress

Map

Light Transaction Object (LTO)

+ On-Hold

+ Ready to Filter

+ in Filtering Process

Total Items in In-Progress Map

Ready

Queue

Content Readers

Content Info

Search QP

SQL QP

Query

Table

Notification

Protocol

Handler

Figure 1: Architecture of SQL Server Full-Text Search
The next step in the process is the breaking of the chunks into keywords. Word breakers are modules which are human language-aware. SQL Server search installs word breakers for various languages including but not limited to English (USA and UK), Japanese, German, French, Korean, Simplified and Traditional Chinese, Spanish, Thai, Dutch, Italian, and Swedish. The word breakers are also hosted by the filter daemons and they emit keywords in Unicode, alternate keywords in Unicode and location of the keyword in the text. These keywords and related metadata are transferred to the MS Search process via a high speed shared memory protocol which feeds the data into the Indexer. The indexer builds an inverted list with a batch of keywords. A batch consists of all the keywords from one or more content items. Once MS Search persists this inverted list to disk, it sends notification back to the SQL Server process confirming success. This protocol ensures that, although documents are not synchronously indexed, documents won’t be lost in the event of process or server failures and it allows the indexing process to be restartable based upon metadata maintained by the SQL Server kernel.
As with all text indexing systems we’ve worked upon, the indexes are in a highly compressed form which increases storage efficiency but runs the risk of driving up the keyword insertion cost. To obtain this storage size reduction without substantially penalizing the insertion operation, a stack of indexes are maintained. New documents are built into a small index, which is periodically batch merged into a larger index which, in turn, is periodically merged into the base index. This stack of indexes may be greater than three deep but the principle remains the same and it’s an engineering approach that allows the use of an aggressively compressed index form without driving up the insertion costs dramatically. When searching for a keyword, all indexes in this stack need to be searched so there is some advantage in keeping the number of indexes to a small number. During insertion and merge operations, distribution and frequency statistics are maintained for internal query processing use and for ranking purposes.
This whole cycle sets up a pipeline involving the SQL Server kernel, the MS Search engine, and the filter daemons the combination of which is key to reliability and performance of SQL Server full text indexing process.
3. SQL Server Full-text Search Query Features
The full text indexes supported by SQL Server are created using the familiar CREATE INDEX SQL DDL statement. These indexes are fully supported by SQL Server standard utilities, such as backup and restore, and other administrative operations, such as attach/detach of databases work unchanged in the presence of full text search indexes. Other enterprise-level features, including shared disk failover clustering, are fully supported in the presence of full text indexes.
Indexes are created and maintained online using one of the following options:

1. Full Crawl: scans the full table and builds or rebuilds a complete full text index on the indexed columns of the table. This operation proceeds online with utility progress reporting.
2. Incremental Crawl: uses a timestamp column on the indexed table to track changes to the indexed content since the last re-index.
3. Change Tracking: is used to maintain near real time currency between the full text index and the underlying text data. The SQL Server Query Processor directly tracks changes to the indexed data and this data is applied in near real time to the full text index.
The full text search support is exposed in SQL using the following constructs:
1. Contains Predicate: The contains predicate has the basic syntactic form Contains(col_list,,’<search condition>’). This predicate is true if any of the indicated columns in the list col_list contains terms which satisfy the given search condition. A search condition can be a keyword, a keyword prefix, a phrase or a more general proximity term, or some combination of all of these. For example a predicate Contains(description, (‘word* or Excel or “Microsoft Access”’) will match all entries with description containing words like ‘word’, ‘wordperfect’, ‘wordstar’, ‘wordings’, ‘Excel’ or the phrase ‘Microsoft Access’.
2. Freetext Predicate: Freetext predicates are similar to the contains predicate except that they match on text containing not only the terms in the search condition, but also the terms which are linguistically similar (stemming) to the terms in the search condition. Thus Freetext(description,‘run in the rain’) will match all the items that contain in its description column text with terms like run, running, ran, rain, raining, rains etc.

3. ContainsTable & FreetextTable: The previous 2 predicates, Contains and Freetext match data which satisfy search terms. However, they do not provide any way of obtaining a rank measure of the match. ContainsTable and Freetexttable are table-valued functions which locate entries using a search condition similar to that of Contains and the Freetext predicates, and return the items along with a rank value for each matching item. The rank is computed using keyword distribution within the data as well as in the whole corpus.
The search condition for any of the predicates described above can include:

1. Keyword lookup: E.g. Contains(*,’searched-for-word-or-phrase’)
2. Linguistic generation of relevant keywords:
a. Stemming: Freetext(*,’distributed’) finds all documents containing the keyword “distributed” and all similar forms.
b. Thesaurus and Inflectional Forms: For example: Contains(*,’FORMSOF(INFLECTIONAL, distributed) AND FORMSOF(THESAURUS, databases)’) will find documents containing inflectional forms of “distributed” and all words meaning the same as databases (thesaurus support).
3. Weighted Terms: Query terms can be assigned relative weight to impact the rank of matching documents when one wants to favor one term over another. In the following the spread search term is given twice the weight of the sauces search team which is, in turn, given twice the weight of the relishes search term:
SELECT a.CategoryName, a.Description, b.rank

FROM Categories a,ContainsTable(Categories, description,
 'ISABOUT (spread weight (.8), sauces weight (.4), relishes weight (.2))') b WHERE a.categoryId = b.[key]

4. Phrase and Proximity Query: One can specify queries over phrases, and more generally using proximity (NEAR) between terms in a matching document, e.g. “distributed NEAR databases” matches items in which the term distributed appears close to the term databases.

5. Prefix match: Search conditions can specify a query for matching the prefix of a term. For example ‘data*’ matches all terms data, databases, datastore, datasource, etc.
6. Composition: Terms can be composed using conjuncts (AND), disjuncts (OR) and conjuncted complementation (AND NOT).
4. Examples of Full text Query Scenarios
Scenario 1. We have a table with documents published in a site. The table has a schema Documents(DocumentId, Title, Author, PublishedDate, Version, RevisionDate, Content) with a full-text index built on columns Title and Content. Following are some queries one can issue on this table.
SELECT title, author

FROM Documents

WHERE Author = ‘Linda Chapman’ and Contains(Title,’child NEAR development’)
This query finds information on documents authored by Linda Chapman where title includes the term child close to the term development.
SELECT a.Title, a.Author , a.PublishedDate, b.rank
FROM Documents a, FreetextTable(Documents,Content,’”child development” AND
 insomnia’) b
WHERE a.DocumentId = b.[key] and a.Author = ‘Linda Chapman’ order by b.rank desc
This query finds all documents authored by Linda Chapman on child development and insomnia. The result is presented in descending order of rank.

Scenario 2. We want to search for information distributed in heterogeneous sources. Data is stored in an Exchange mail server in email format, in the filesystem in form of locally-authored documents, and in SQL Server in form of published documents. SQL Server content schema is the same as above in Scenario 1. The filesystem content index is provided by the filesystem indexing service. The following query gets all documents related to marketing and cosmetics from the email store, the filesystem, and from the SQL Server document store.
--Get qualifying email docs
SELECT DisplayName,hRef,MailFrom, Subject
FROM openquery(exchange,

 'SELECT "DAV:displayname" as DisplayName,"DAV:href" as hRef,
 “urn:schemas:mailheader:from” as MailFrom,

 “urn:schemas:mailheader:subject” as subject

 FROM "manager\Inbox"

 WHERE contains(*,''marketing AND cosmetics’’)')

UNION ALL --Get qualifying filesystem data
 SELECT filename, vpath, docauthor, doctitle
 FROM OpenQuery(Monarch,

 'SELECT vpath, Filename, size, doctitle, docauthor

 FROM SCOPE(''deep traversal of "c:\tapasnay\My Documents" '')
 WHERE contains (''marketing AND cosmetics’’)’)

UNION ALL –-Get qualifying SQL Server data
 SELECT Title, ‘SQLServer:Documents:’+cast(DocumentId as varchar(20)) as docref,
 author, title
 FROM Documents
 WHERE contains(*,'marketing AND cosmetics’)
5. Conclusions
In this paper we motivate the integration of a native full text search access method into the Microsoft SQL Server product, describe the architecture of the access method and motivate some of the trade-offs and advantages of the engineering approach taken. We explore the features and functions of the full text search feature and provide example SQL queries showing query integration over structured, semi-structured, and unstructured data.

For further SQL Server 2000 full text search usage and feature details one may look at Inside Microsoft SQL Server [1] or SQL Server 2000 Books online [2]. On the implementation side, we are just completing a major architectural overhaul of the indexing engine and its integration with SQL Server in the next release of the product and this paper is the first description of this work.

6. References

[1] Delaney, Kalen; Inside Microsoft SQL Server 2000, Microsoft Press, 2001
[2] SQL Server 2000 Books Online
_1067345374.vsd
text�

text�

�

�

�

�

�

Table�

�

MS Search Process�

�

�

�

Filter Daemon Manager�

Keywords�

Filter Daemon Process�

Shared Memory�

Filter(s)�

Batch
Requests�

Chunk
Buffer Status�

Indexer�

Catalog�

�

SQL Server Engine�

Shared Memory�

IFilter�

Word Breaker�

IWord-
Breaker
�

 Project�

�

�

�

�

Batch Object�

In-Progress
Map�

Light Transaction Object (LTO)
�

+ On-Hold
+ Ready to Filter
+ in Filtering Process

Total Items in In-Progress Map

�

Ready Queue�

�

�

Content Readers�

Content Info �

Search QP�

SQL QP�

Query�

Notification�

Protocol Handler�

�

